Practice C

Powers of 10 and Scientific Notation

Find the value of each power of 10.

6.
$$10^{-1}$$

Write each number as a power of 10.

Find the value of each expression.

16.
$$6.2 \times 10^7 =$$

17.
$$27.9 \times 10^5 =$$

18.
$$14.87 \times 10^{0} =$$

19.
$$0.2 \times 10^{-6} =$$

20.
$$3.25 \times 10^2 =$$

21.
$$14.15 \times 10^4 =$$

22.
$$3.287 \times 10^{-6} =$$

State whether each number is written in scientific notation. If not, explain why not.

23.
$$45 \times 10^{-2}$$

24.
$$2.6 \times 5^4$$

25.
$$1.41 \times 10^8$$

Order the list of numbers from least to greatest.

26.
$$2.5 \times 10^{-1}$$
; 2.4×10^{-6} ; 5×10^{3} ; 1.23×10^{-1} ; 2.5×10^{-5} ; 3.56×10^{3}

27.
$$4.5 \times 10^{1}$$
; 2.9×10^{-3} ; 1.24×10^{0} ; 3.58×10^{-6} ; 5.5×10^{-3} ; 2.19×10^{-6}

28. The space telescope Hubble orbits the Earth every 97 minutes, and travels more than
$$1.50 \times 10^8$$
 miles every year. Write the distance traveled in standard notation.

30. Write Pluto's mass in terms of grams. (Hint: 1 kg = 1,000 g)

Practice A

7-2 Powers of 10 and Scientific Notation

Find the value of each power of 10.

1. 10 ⁻²	0.01	2. 10 ³	1000
3. 10°	1	4. 10 ⁻⁵	0.00001
5. 10 ⁻¹	0.1	6. 10 ⁷	10,000,000

Co	mplete each statement to wr	ite each number as a power o	f 10.
7.	100,000	8. 0.0001	9. 0.001
	The decimal point is _5_	The decimal point is4	The decimal point is _3
	places to the right of 1, so	places to the left of 1, so	places to the left of 1, s
	$100,000 = 10^{\boxed{5}}$	$0.0001 = 10^{\boxed{-4}}$.	$0.001 = 10^{-3}$

Find the value of each expression.

10. 22.6 × 10 ⁴	226,000	11. 5.28×10^{-3}	0.00528
12. 476.283×10^{-4}	0.0476283	13. 0.482 × 10 ⁶	482,000
14. 0.29 × 10 ⁻¹	0.029	15. 6 × 10 ⁴	60,000

Write each number in scientific notation.

16. 4500	4.5×10^{3}	17. 6,560,000	6.56×10^{6}
18. 0.00002	2×10^{-5}	19. 0.00203	2.03×10^{-3}

Order each list of numbers from least to greatest.

22. In 2003, the population of Virginia was about 7,390,000. Write the population in scientific notation.				7.39	\times 10 ⁶
1.1 × 10 ⁻³	4.1×10^{-2}	$\underline{5.6\times10^{-2}}$	4.2 × 10 ⁸	4.5 × 10 ⁸	9.2 × 10 ⁸
21. 4.5 × 10 ⁸	1.1×10^{-3}	4.1×10^{-2}	5.6×10^{-2}	9.2×10^8	4.2 × 10 ⁸
7.2×10^{-3}	9.1×10^{-3}	4.7×10^{3}	9.2×10^{3}	2.4×10^{4}	6.13 × 10
20. 2.4 × 10 ⁴	9.1×10^{-3}	4.7×10^{3}	6.13×10^4	7.2×10^{-3}	9.2×10^{3}

- 22. In 2003, the population of Virginia was about 7,390,000. Write the population in scientific notation.
- 23. The land area of Virginia is about 4×10^4 square miles. Write the area in standard form.
- 24. In 2003, the population of the United States was about 2.9×10^8 . Write the population in standard form.
- 25. The land area of the United States is about 5.98 \times 10.6 square miles. Write the area in standard form.

7-2 Powers of 10 and Scientific Notation

2. 10° ___

8. $0.00001 = \frac{10^{-5}}{10^{-3}}$

™ Practice C

1. 104 _____10,000

4. 10¹ ____ 10

7. 1000 = ____10³ **10.** 10,000 = 10⁴

Find the value of each power of 10.

Write each number as a power of 10.

Find the value of each expression.

15. $5.2 \times 10^{-4} = 0.00052$

17. $27.9 \times 10^5 = 2,790,000$

19. $0.2 \times 10^{-6} = 0.0000002$

21. $14.15 \times 10^4 = \underline{141,500}$

If not, explain why not.

23. 45×10^{-2}

24. 2.6×5^4 **25.** 1.41 × 10⁸

13. $1 \times 10^4 = \underline{10,000}$

7-2 Powers of 10 and Scientific Notation

Find the value of each power of 10.

Practice B

1. 10 ⁻³ _	0.001	2. 10 ⁵ 100,000	3. 10 ⁻⁴ _	0.0001
4. 10°	1	5. 10 ⁷ 10,000,000	6. 10 ¹	10

Write each number as a nower of 10

7. 1.000.000	10 ⁶	8. 0.001 10 ⁻³	9. 0.000001	10^{-6}	
10. 0.00001	10 ⁻⁵	11.01 10-1	12. 0.00000001	10 ⁻⁸	

Find the value of each expression.

13. 5.02×10^3 _	5020	14. 603×10^{-4} _	0.0603
15. 52.8 × 10 ⁶ _	52,800,000	16. 5.41×10^{-3} _	0.00541
17. 0.03 × 10 ⁻²	0.0003	18. 22.81 × 10 ⁻⁶	0.00002281

Write each number in scientific notation.

19. 4500	4.5×10^{3}	20. 6,560,000 _	6.56×10^6	
21 . 0.00002	2×10^{-5}	22 . 0.00203	2.03×10^{-3}	

Order the list of numbers from least to greatest.

$$\begin{array}{l} \textbf{23.} \ 3\times10^{2}, 4.54\times10^{-3}; 6.75\times10^{2}; 8.2\times10^{-4}; 9\times10^{-1}; 6.18\times10^{-4} \\ 6.18\times10^{-4}; 8.2\times10^{-4}; 4.54\times10^{-3}; 9\times10^{-1}; 3\times10^{2}; 6.75\times10^{2} \end{array}$$

24.
$$5.4 \times 10^{-3}$$
; 6.2×10^{-1} ; 7.25×10^{3} ; 6.87×10^{3} ; 2.24×10^{-1} ; 6.6×10^{-3}
 5.4×10^{-3} ; 6.6×10^{-3} ; 2.24×10^{-1} ; 6.2×10^{-1} ; 6.87×10^{3} ; 7.25×10^{3}

14

- **25.** In 1970, the number of televisions sold in the United States was about 1.2×10^7 . Write this number in standard form.
- 26. In 1950, about 3,880,000 households in the United States had televisions. Write this number in scientific notation.
- 27. Find the volume of the cube shown at right. Write the answer in both standard form and in scientific notation. 64,000,000,000 mm³; $6.4 \times 10^{10} \, \text{mm}^3$

s = 4000 mm

Holt Algebra 1

12.000.000

Copyright © by Holt, Rinehart and Winston. Holt Algebra 1

1

14. $2 \times 10^4 =$

20. $3.25 \times 10^2 =$

22. $3.287 \times 10^{-6} = 0.000003287$

no; the first number is not between 1 and 10.

no; the second number is not a power of 10.

18. $14.87 \times 10^{\circ} =$ **14.87**

5. 10⁻⁶ 0.000001

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Review for Mastery 7-2 Powers of 10 and Scientific Notation

Powers of 10 are used to write large numbers in a simple way.

The exponent will tell you how many places to move the decimal when

ı	Find the value of 10 ⁵	Find the valu
ı	Find the value of 10 ⁵	

Step 1: Start with the number 1.

Step 2: The exponent is positive 5. Move the decimal 5 spaces to the right.

Write 100,000,000 as a power of 10.

The decimal point is 8 places to the right of the 1. The exponent is 8.

Step 1: Start with the number 1.

Step 2: The exponent is negative 4. Move the decimal 4 spaces to the left.

0.001 = 0.0001

Write 0.00001 as a power of 10.

The decimal point is 5 places to the left of the one. The exponent is -5.

First determine whether the decimal point will move to the right or to the left Then find the value of each power of 10.

1. 10 ⁶		2. 10 ⁻²	3.	10 ⁴	
	right	left		right	
	1,000,000	0.01		10,000	

First determine whether the exponent will be positive or negative when each number is written as a power of 10. Then write each number as a power of 10.

4. 1000		5. 0.0001		6. 10,00	0,000
	positive	nega	ıtive		positive
	10 ³	10	-4		10 ⁷

Copyright © by Holt, Rinehart and Winston. All rights reserved. Holt Algebra 1

Order the list of numbers from least to greatest.

State whether each number is written in scientific notation.

$$\begin{aligned} \textbf{26.} & \ 2.5\times 10^{-1}; \ 2.4\times 10^{-6}; \ 5\times 10^{3}; \ 1.23\times 10^{-1}; \ 2.5\times 10^{-6}; \ 3.56\times 10^{3} \\ & \ \underline{2.4\times 10^{-6}; \ 2.5\times 10^{-6}; \ 1.23\times 10^{-1}; \ 2.5\times 10^{-1}; \ 3.56\times 10^{3}; \ 5\times 10^{3} \end{aligned}$$

27.
$$4.5 \times 10^{1}$$
; 2.9×10^{-3} ; 1.24×10^{0} ; 3.58×10^{-6} ; 5.5×10^{-3} ; 2.19×10^{-6}
 2.19×10^{-6} ; 3.58×10^{-6} ; 2.9×10^{-3} ; 5.5×10^{-3} ; 1.24×10^{0} ; 4.5×10^{1}

. The space telescope Hubble orbits the Earth every					
97 minutes, and travels			_	150.000.000 mi	
every year. Write the d	istance traveled i	n standard notatio	n	100,000,000 1111	

29. Hubble has taken many photographs of Pluto. Pluto's mass is about 14,000,000,000,000,000,000,000 kg. Write Pluto's mass in scientific notation.

 1.4×10^{22} kg 1.4×10^{25} g

40,000 sq mi

290,000,000

5.980.000 sa mi

3. 10⁻² _____0.01

9. 0.01= _____10⁻²

20.000

325

6. 10⁻¹

0.1

Copyright © by Holt, Rinehart and Winston. All rights reserved. 15 Holt Algebra 1

30. Write Pluto's mass in terms of grams.

(Hint: 1 kg = 1,000 g)