Practice C # Powers of 10 and Scientific Notation Find the value of each power of 10. **6.** $$10^{-1}$$ Write each number as a power of 10. Find the value of each expression. **16.** $$6.2 \times 10^7 =$$ **17.** $$27.9 \times 10^5 =$$ **18.** $$14.87 \times 10^{0} =$$ **19.** $$0.2 \times 10^{-6} =$$ **20.** $$3.25 \times 10^2 =$$ **21.** $$14.15 \times 10^4 =$$ **22.** $$3.287 \times 10^{-6} =$$ State whether each number is written in scientific notation. If not, explain why not. **23.** $$45 \times 10^{-2}$$ **24.** $$2.6 \times 5^4$$ **25.** $$1.41 \times 10^8$$ Order the list of numbers from least to greatest. **26.** $$2.5 \times 10^{-1}$$; 2.4×10^{-6} ; 5×10^{3} ; 1.23×10^{-1} ; 2.5×10^{-5} ; 3.56×10^{3} **27.** $$4.5 \times 10^{1}$$; 2.9×10^{-3} ; 1.24×10^{0} ; 3.58×10^{-6} ; 5.5×10^{-3} ; 2.19×10^{-6} 28. The space telescope Hubble orbits the Earth every 97 minutes, and travels more than $$1.50 \times 10^8$$ miles every year. Write the distance traveled in standard notation. **30.** Write Pluto's mass in terms of grams. (Hint: 1 kg = 1,000 g) ### **Practice A** ## 7-2 Powers of 10 and Scientific Notation #### Find the value of each power of 10. | 1. 10 ⁻² | 0.01 | 2. 10 ³ | 1000 | |----------------------------|------|----------------------------|------------| | 3. 10° | 1 | 4. 10 ⁻⁵ | 0.00001 | | 5. 10 ⁻¹ | 0.1 | 6. 10 ⁷ | 10,000,000 | | Co | mplete each statement to wr | ite each number as a power o | f 10. | |----|------------------------------|------------------------------|----------------------------| | 7. | 100,000 | 8. 0.0001 | 9. 0.001 | | | The decimal point is _5_ | The decimal point is4 | The decimal point is _3 | | | places to the right of 1, so | places to the left of 1, so | places to the left of 1, s | | | $100,000 = 10^{\boxed{5}}$ | $0.0001 = 10^{\boxed{-4}}$. | $0.001 = 10^{-3}$ | #### Find the value of each expression. | 10. 22.6 × 10 ⁴ | 226,000 | 11. 5.28×10^{-3} | 0.00528 | |-------------------------------------|-----------|------------------------------------|---------| | 12. 476.283×10^{-4} | 0.0476283 | 13. 0.482 × 10 ⁶ | 482,000 | | 14. 0.29 × 10 ⁻¹ | 0.029 | 15. 6 × 10 ⁴ | 60,000 | #### Write each number in scientific notation. | 16. 4500 | 4.5×10^{3} | 17. 6,560,000 | 6.56×10^{6} | |--------------------|---------------------|--------------------|-----------------------| | 18. 0.00002 | 2×10^{-5} | 19. 0.00203 | 2.03×10^{-3} | #### Order each list of numbers from least to greatest. | 22. In 2003, the population of Virginia was about 7,390,000. Write the population in scientific notation. | | | | 7.39 | \times 10 ⁶ | |--|----------------------|--------------------------------|-----------------------|-----------------------|--------------------------| | 1.1 × 10 ⁻³ | 4.1×10^{-2} | $\underline{5.6\times10^{-2}}$ | 4.2 × 10 ⁸ | 4.5 × 10 ⁸ | 9.2 × 10 ⁸ | | 21. 4.5 × 10 ⁸ | 1.1×10^{-3} | 4.1×10^{-2} | 5.6×10^{-2} | 9.2×10^8 | 4.2 × 10 ⁸ | | 7.2×10^{-3} | 9.1×10^{-3} | 4.7×10^{3} | 9.2×10^{3} | 2.4×10^{4} | 6.13 × 10 | | 20. 2.4 × 10 ⁴ | 9.1×10^{-3} | 4.7×10^{3} | 6.13×10^4 | 7.2×10^{-3} | 9.2×10^{3} | - 22. In 2003, the population of Virginia was about 7,390,000. Write the population in scientific notation. - 23. The land area of Virginia is about 4×10^4 square miles. Write the area in standard form. - 24. In 2003, the population of the United States was about 2.9×10^8 . Write the population in standard form. - 25. The land area of the United States is about 5.98 \times 10.6 square miles. Write the area in standard form. 7-2 Powers of 10 and Scientific Notation **2**. 10° ___ 8. $0.00001 = \frac{10^{-5}}{10^{-3}}$ **™** Practice C 1. 104 _____10,000 4. 10¹ ____ 10 **7.** 1000 = ____10³ **10.** 10,000 = 10⁴ Find the value of each power of 10. Write each number as a power of 10. Find the value of each expression. **15.** $5.2 \times 10^{-4} = 0.00052$ 17. $27.9 \times 10^5 = 2,790,000$ **19.** $0.2 \times 10^{-6} = 0.0000002$ **21.** $14.15 \times 10^4 = \underline{141,500}$ If not, explain why not. **23.** 45×10^{-2} **24.** 2.6×5^4 **25.** 1.41 × 10⁸ **13.** $1 \times 10^4 = \underline{10,000}$ ### 7-2 Powers of 10 and Scientific Notation #### Find the value of each power of 10. Practice B | 1. 10 ⁻³ _ | 0.001 | 2. 10 ⁵ 100,000 | 3. 10 ⁻⁴ _ | 0.0001 | |------------------------------|-------|-------------------------------|------------------------------|--------| | 4. 10° | 1 | 5. 10 ⁷ 10,000,000 | 6. 10 ¹ | 10 | #### Write each number as a nower of 10 | 7. 1.000.000 | 10 ⁶ | 8. 0.001 10 ⁻³ | 9. 0.000001 | 10^{-6} | | |--------------------|------------------|---------------------------|----------------|------------------|--| | 10. 0.00001 | 10 ⁻⁵ | 11.01 10-1 | 12. 0.00000001 | 10 ⁻⁸ | | #### Find the value of each expression. | 13. 5.02×10^3 _ | 5020 | 14. 603×10^{-4} _ | 0.0603 | |-------------------------------------|------------|-------------------------------------|------------| | 15. 52.8 × 10 ⁶ _ | 52,800,000 | 16. 5.41×10^{-3} _ | 0.00541 | | 17. 0.03 × 10 ⁻² | 0.0003 | 18. 22.81 × 10 ⁻⁶ | 0.00002281 | ### Write each number in scientific notation. | 19. 4500 | 4.5×10^{3} | 20. 6,560,000 _ | 6.56×10^6 | | |---------------------|---------------------|------------------------|-----------------------|--| | 21 . 0.00002 | 2×10^{-5} | 22 . 0.00203 | 2.03×10^{-3} | | #### Order the list of numbers from least to greatest. $$\begin{array}{l} \textbf{23.} \ 3\times10^{2}, 4.54\times10^{-3}; 6.75\times10^{2}; 8.2\times10^{-4}; 9\times10^{-1}; 6.18\times10^{-4} \\ 6.18\times10^{-4}; 8.2\times10^{-4}; 4.54\times10^{-3}; 9\times10^{-1}; 3\times10^{2}; 6.75\times10^{2} \end{array}$$ **24.** $$5.4 \times 10^{-3}$$; 6.2×10^{-1} ; 7.25×10^{3} ; 6.87×10^{3} ; 2.24×10^{-1} ; 6.6×10^{-3} 5.4×10^{-3} ; 6.6×10^{-3} ; 2.24×10^{-1} ; 6.2×10^{-1} ; 6.87×10^{3} ; 7.25×10^{3} 14 - **25.** In 1970, the number of televisions sold in the United States was about 1.2×10^7 . Write this number in standard form. - 26. In 1950, about 3,880,000 households in the United States had televisions. Write this number in scientific notation. - 27. Find the volume of the cube shown at right. Write the answer in both standard form and in scientific notation. 64,000,000,000 mm³; $6.4 \times 10^{10} \, \text{mm}^3$ s = 4000 mm Holt Algebra 1 12.000.000 Copyright © by Holt, Rinehart and Winston. Holt Algebra 1 1 **14.** $2 \times 10^4 =$ **20.** $3.25 \times 10^2 =$ **22.** $3.287 \times 10^{-6} = 0.000003287$ no; the first number is not between 1 and 10. no; the second number is not a power of 10. **18.** $14.87 \times 10^{\circ} =$ **14.87** 5. 10⁻⁶ 0.000001 ## Copyright © by Holt, Rinehart and Winston. All rights reserved. ### Review for Mastery 7-2 Powers of 10 and Scientific Notation Powers of 10 are used to write large numbers in a simple way. The exponent will tell you how many places to move the decimal when | ı | Find the value of 10 ⁵ | Find the valu | |---|-----------------------------------|---------------| | ı | Find the value of 10 ⁵ | | ### Step 1: Start with the number 1. Step 2: The exponent is positive 5. Move the decimal 5 spaces to the right. ## Write 100,000,000 as a power of 10. The decimal point is 8 places to the right of the 1. The exponent is 8. Step 1: Start with the number 1. Step 2: The exponent is negative 4. Move the decimal 4 spaces to the left. ## 0.001 = 0.0001 ## Write 0.00001 as a power of 10. The decimal point is 5 places to the left of the one. The exponent is -5. ### First determine whether the decimal point will move to the right or to the left Then find the value of each power of 10. | 1. 10 ⁶ | | 2. 10 ⁻² | 3. | 10 ⁴ | | |--------------------|-----------|----------------------------|----|-----------------|--| | | right | left | | right | | | | 1,000,000 | 0.01 | | 10,000 | | #### First determine whether the exponent will be positive or negative when each number is written as a power of 10. Then write each number as a power of 10. | 4. 1000 | | 5. 0.0001 | | 6. 10,00 | 0,000 | |----------------|-----------------|------------------|-------|-----------------|-----------------| | | positive | nega | ıtive | | positive | | | 10 ³ | 10 | -4 | | 10 ⁷ | | | | | | | | Copyright © by Holt, Rinehart and Winston. All rights reserved. Holt Algebra 1 ### Order the list of numbers from least to greatest. State whether each number is written in scientific notation. $$\begin{aligned} \textbf{26.} & \ 2.5\times 10^{-1}; \ 2.4\times 10^{-6}; \ 5\times 10^{3}; \ 1.23\times 10^{-1}; \ 2.5\times 10^{-6}; \ 3.56\times 10^{3} \\ & \ \underline{2.4\times 10^{-6}; \ 2.5\times 10^{-6}; \ 1.23\times 10^{-1}; \ 2.5\times 10^{-1}; \ 3.56\times 10^{3}; \ 5\times 10^{3} \end{aligned}$$ **27.** $$4.5 \times 10^{1}$$; 2.9×10^{-3} ; 1.24×10^{0} ; 3.58×10^{-6} ; 5.5×10^{-3} ; 2.19×10^{-6} 2.19×10^{-6} ; 3.58×10^{-6} ; 2.9×10^{-3} ; 5.5×10^{-3} ; 1.24×10^{0} ; 4.5×10^{1} | . The space telescope Hubble orbits the Earth every | | | | | | |---|--------------------|--------------------|---|------------------|--| | 97 minutes, and travels | | | _ | 150.000.000 mi | | | every year. Write the d | istance traveled i | n standard notatio | n | 100,000,000 1111 | | 29. Hubble has taken many photographs of Pluto. Pluto's mass is about 14,000,000,000,000,000,000,000 kg. Write Pluto's mass in scientific notation. 1.4×10^{22} kg 1.4×10^{25} g 40,000 sq mi 290,000,000 5.980.000 sa mi **3.** 10⁻² _____0.01 **9.** 0.01= _____10⁻² 20.000 325 **6.** 10⁻¹ 0.1 Copyright © by Holt, Rinehart and Winston. All rights reserved. 15 Holt Algebra 1 30. Write Pluto's mass in terms of grams. (Hint: 1 kg = 1,000 g)